首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   5篇
  国内免费   19篇
化学   185篇
晶体学   6篇
力学   2篇
数学   20篇
物理学   58篇
  2023年   21篇
  2022年   9篇
  2021年   5篇
  2020年   16篇
  2019年   9篇
  2018年   5篇
  2017年   8篇
  2016年   4篇
  2015年   5篇
  2014年   17篇
  2013年   18篇
  2012年   23篇
  2011年   32篇
  2010年   18篇
  2009年   12篇
  2008年   5篇
  2007年   7篇
  2006年   8篇
  2005年   8篇
  2004年   5篇
  2003年   8篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1995年   1篇
排序方式: 共有271条查询结果,搜索用时 234 毫秒
31.
《中国化学快报》2020,31(7):1919-1922
A novel BODIPY (boradiazaindacene) dye denoted as BODIPY-DT containing terpyridine unit has been designed and characterized. The dye is found to be selective and visual solvatochromic sensor toward DMF among test organic solvents. The sensing process displays time-controllable, dynamic signal outputs in the emission colors including red, purple, yellow and even white emission colors. It is presented that selective free radical oxidation reaction happens during the recognition process.  相似文献   
32.
《中国化学快报》2023,34(8):107930
To achieve real-time monitoring of humidity in various applications, we prepared facile and ultra-thin CoAl layered double hydroxide (CoAl LDH) nanosheets to engineer quartz crystal microbalances (QCM). The characteristics of CoAl LDH were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectric spectroscopy (XPS), Brunauer–Emmett–Telle (BET), atomic force microscopy (AFM) and zeta potential. Due to their large specific surface area and abundant hydroxyl groups, CoAl LDH nanosheets exhibit good humidity sensing performance. In a range of 11.3% and 97.6% relative humidity (RH), the sensor behaved an ultrahigh sensitivity (127.8 Hz/%RH), fast response (9.1 s) and recovery time (3.1 s), low hysteresis (3.1%RH), good linearity (R2 = 0.9993), stability and selectivity. Besides, the sensor can recover the initial response frequency after being wetted by deionized water, revealing superior self-recovery ability under high humidity. Based on in-situ Fourier transform infrared spectroscopy (FT-IR), the adsorption mechanism of CoAl LDH toward water molecules was explored. The QCM sensor can distinguish different respiratory states of people and wetting degree of fingers, as well as monitor the humidity in vegetable packaging, suggesting excellent properties and a promising application in humidity sensing.  相似文献   
33.
《中国化学快报》2023,34(6):107939
The water promotion effects, where water can provide a solution-mediated reaction pathway in various heterogeneous chemical catalysis, have been presented and attracted wide attention recently, yet, the rational design of catalysts with a certain ability of enhancing water-induced reaction process is full of challenges and difficulties. Here, we show that by incorporating alkali (Na, K) cations as an electronic and/or structural promoter into Pd/rGO-ZnCr2O4 (rGO, reduced graphene oxide), the obtained Pd(Na)/rGO-ZnCr2O4 as a representative example demonstrates an outstanding benzyl alcohol oxidation activity in the Pickering emulsion system in comparison to the alkali-free counterpart. The response experiments of water injection confirm the enhanced activity, and the Na-modified catalyst can further enhance the promotion effects of water on the reaction. The effects of alkali cations for Pd nanoparticles are identified and deciphered by a series of experimental characterizations (XPS, in situ CO-DRIFTS, and CO-TPR coupled with MS), showing that there is abundant −OH on the surface of the catalyst, which is stabilized by the formation of Pd−OHx. The alkali-stabilized Pd−OHx is helpful to enhance the water-induced reaction process. According to the results of in situ Raman as well as UV-vis absorption spectra, the Na-modulated Pd(Na)/rGO-ZnCr2O4 enables the beneficial characteristics for distorting the benzyl alcohol structure and enhancing the adsorption of benzyl alcohol. Further, the mechanism for enhanced water promotion effects is rationally proposed. The strategy of alkali cations-modified catalysts can provide a new direction to effectively enhance the chemical reaction involving small molecule water.  相似文献   
34.
Micro- and spongiform nanocrystalline Zn2V2O7 compounds were synthesized by hydrothermal and solid-state reaction techniques, and their morphological features were investigated by scanning electron microscopy (SEM). The grain size ranges of the produced powders were 3–15, 0.5–2 μm, and 50–500 nm. The luminescence spectra of these compounds were measured under pulse cathode beam and photoexcitation (200–400 nm). The luminescence decay properties of Zn2V2O7 were studied.It is found that the intensity, maximum position of luminescence spectra and luminescence decay time of Zn2V2O7 samples depend considerably on the grain size of the synthesized powders. The processes of energy relaxation in Zn2V2O7 and the observed size effect on the luminescence properties are also discussed.  相似文献   
35.
Nanostructured transition metal oxides are promising alternative anodes for lithium ion batteries. Li-ion storage performance is expected to improve if high packing density energy particles are available. Herein, Mn2O3 microspheres with a ca. 18 μm diameter and a tapped density of 1.33 g/cm3 were synthesized by a facile solvothermal–thermal coversion route. Spherical MnCO3 precursors were obtained through solvothermal treatment and they decomposed and converted into Mn2O3 microspheres at an annealing temperature of 700 °C. The Mn2O3 microspheres consisted of Mn2O3 nanoparticles with an average 40 nm diameter. These porous Mn2O3 microspheres allow good electrolyte penetration and provide an ion buffer reservoir to ensure a constant electrolyte supply. The Mn2O3 microspheres have reversible capacities of 590 and 320 mAh/g at 50 and 400 mA/g, respectively. We thus report an efficient route for the fabrication of energy particles for advanced energy storage.  相似文献   
36.
We theoretically study the electronic properties and pressure induced solid–solid phase transition of Li3N by first-principles calculations. The calculations indicate a pressure-induced structural phase transition above 1.5GPa from the ambient P6/MMM hexagonal phase (α-Li3N) to a layered hexagonal phase (β-Li3N, P63/MMC) which is accompanied by a 21.6% volume collapse. Above 38.8 GPa, β-Li3N transforms into γ-Li3N (Fm3?m), and the recently reported new α-phase (P-3M1) is not stable under high pressure. The analysis of electronic density of states suggests that various Li3N polymorphs are insulators, and the band gap is broadened with further compression.  相似文献   
37.
38.
以Zn( NO3)3·6H2O、Ce( NO3)3·6H2O为原料,明胶为模板分散剂,采用凝胶模板燃烧法制备纯ZnO和Ce/ZnO纳米晶,利用XRD、TEM、BET、UV-Vis漫反射进行表征.以染料罗丹明B为目标降解物考察了样品的光催化活性.结果表明:产物粒子形状基本为球形,结晶良好,属六方晶系结构.相比纯ZnO,Ce/ZnO对光具有更高的吸收利用率,在紫外和可见光下对罗丹明B的降解能力均有明显提高;随Ce掺杂量的增加,样品的粒径减小,比表面积增大,罗丹明B的降解率相应增大,在紫外和可见光下降解率分别可达98.6;、78.3;,其原因在于Ce掺杂有利于在ZnO纳米粒子中心和表面之间产生电势差,实现光生电子-空穴对的有效分离.  相似文献   
39.
用微波辅助多元醇法对预先制备的ZnO微米球进行修饰,合成了载银氧化锌微米球(ZnO/Ag). 利用X射线衍射仪、场发射扫描电子显微镜、透射电子显微镜、X射线光电子能谱仪、紫外-可见双光束分光光度计和光致发光光谱仪等对样品的结构、形貌和光学性能进行了表征. 在紫外光照射下,通过亚甲基蓝的降解反应研究了样品的光催化活性. 结果表明,所制备的ZnO/Ag微米球是由面心立方的Ag纳米颗粒附着在纤锌矿结构的ZnO球表面形成;与ZnO相比,ZnO/Ag的紫外-可见光吸收光谱发生明显红移,在紫外和可见光范围均有较强的吸收;随着Ag含量的增加,ZnO/Ag荧光光谱强度先减弱后增强;与ZnO相比,ZnO/Ag的光催化活性明显提高,AgNO3 浓度为0.05 mol/L时制得的ZnO/Ag光催化活性最高.  相似文献   
40.
The Diels–Alder (DA) reaction is one of the most important reactions in organic chemistry. The controversy surrounding this reaction as to whether it follows a concerted or stepwise mechanism has existed for a long time. The reaction of 1,3‐butadiene and ethylene is the paradigmatic example of the DA reaction. We have reinvestigated the mechanism of this reaction using density functional theory. The theoretical study considered all types of possible pathways for the reaction of 1,3‐butadiene and ethylene using six functionals at different rungs of Jacob's ladder. Therefore, a complete picture is given for a thorough understanding of the iconic DA reaction, and a new stationary point during the reaction processes has been reported for the first time. The calculated results indicated that three functionals, ωB97X‐D, M06‐2X, and B2‐PLYP, of the fourth and fifth rungs of Jacob's ladder performed well in the investigation of the mechanism of this reaction and that the reliable basis set should be larger than 6‐311+G(2d,p). The cis‐1,3‐butadiene more easily reacted with ethylene compared with 1,3‐butadiene in the trans conformation. The concerted mechanism was found to be energetically favorable, whose energy barrier is around 10 kcal/mol lower than that of the stepwise mechanism. Two investigated solvents, toluene and CH3CN, had little impact on this simple DA reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号